A multiobjective approach to cost effective long-term groundwater monitoring using an elitist nondominated sorted genetic algorithm with historical data
نویسندگان
چکیده
This study presents a methodology for quantifying the tradeoffs between sampling costs and local concentration estimation errors in an existing groundwater monitoring network. The method utilizes historical data at a single snapshot in time to identify potential spatial redundancies within a monitoring network. Spatially redundant points are defined to be monitoring locations that do not appreciably increase local estimation errors if they are not sampled. The study combines nonlinear spatial interpolation with the nondominated sorted genetic algorithm (NSGA) to identify the tradeoff curve (or Pareto frontier) between sampling costs and local concentration estimation errors. Guidelines are given for using theoretical relationships from the field of genetic and evolutionary computation for population sizing and niching to ensure that the NSGA is competently designed to navigate the problem’s decision space. Additionally, both a selection pressure analysis and a niching-based elitist enhancement of the NSGA are presented, which were integral to the algorithm’s efficiency in quantifying the Pareto frontier for costs and estimation errors. The elitist NSGA identified 34 of 36 members of the Pareto optimal set attained from enumerating the monitoring application’s decision space; this represents a substantial improvement over the standard NSGA, which found at most 21 of 36 members.
منابع مشابه
Designing A New Elitist Nondominated Sorted Genetic Algorithm For A Multiobjective Long Term Groundwater Monitoring Application
Although usage of genetic algorithms (GAs) has become widespread, the theoretical work from the genetic and evolutionary computation (GEC) field has been largely ignored by practitioners in realworld applications. This paper provides an overview of a three-step method for utilizing GEC theory to ensure robust search and avoid the common pitfalls in GA applications. Additionally, this study pres...
متن کاملMonitoring process variability: a hybrid Taguchi loss and multiobjective genetic algorithm approach
The common consideration on economic model is that there is knowledge about the risk of occurrence of an assignable cause and the various cost parameters that does not always adequately describe what happens in practice. Hence, there is a need for more realistic assumptions to be incorporated. In order to reduce cost penalties for not knowing the true values of some parameters, this paper aims ...
متن کاملA fast and elitist multiobjective genetic algorithm: NSGA-II
Multiobjective evolutionary algorithms (EAs) that use nondominated sorting and sharing have been criticized mainly for their: 1) ( ) computational complexity (where is the number of objectives and is the population size); 2) nonelitism approach; and 3) the need for specifying a sharing parameter. In this paper, we suggest a nondominated sorting-based multiobjective EA (MOEA), called nondominate...
متن کاملAn algorithm for approximating nondominated points of convex multiobjective optimization problems
In this paper, we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP), where the constraints and the objective functions are convex. We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points. The proposed algorithm can be appl...
متن کاملBenson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کامل